Mathématiques, les notions indispensables

  •  Les identités remarquables 
  • $(a+b)^2 = a^2+2ab+b^2$
  • $(a-b)^2=a^2-2ab+b^2$
  • $(a-b)(a+b)=a^2-b^2$
  • $(a+b)^3=a^3+3a^2b+3ab^2+b^3$
  • $(a-b)^3=a^3-3a^2b+3ab^2-b^3$
  • $(a+b)(a^2-ab+b^2)=a^3+b^3$
  • $(a-b)(a^2+ab+b^2)=a^3-b^3$
  •  Résolution d'une équation du deuxième degré dans $\mathbb{R}$
  • $ax^2+bx+c=0$
  • $\Delta=b^2-4ac$
  • si $\Delta>0$, il existe deux solutions, $x=\dfrac{-b\pm\sqrt{\Delta}}{2a}$
  • si $\Delta=0$, il existe une solutions (double), $x=\dfrac{-b}{2a}$
  • si $\Delta<0$, il n'y a pas de solution réelle

Mathématiques, les symboles utiles

  •  Les notations 
  • $\in$ : appartient à
  • $\forall$ : pour tout
  • $\exists$ : il existe
  • $\cap$ : intersection
  • $\cup$ : union
  •  Les ensembles des nombres 
  • $\mathbb{N}$ : ensemble des nombres naturels ( naturale)
  • $\mathbb{Z}$ : ensemble des nombres relatifs ( zählen)
  • $\mathbb{Q}$ : ensemble des nombres rationnels ( quoziente)
  • $\mathbb{R}$ : ensemble des nombres réels ( real)